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There are two fundamentally different strategies for solving the standard trans-
port or continuity equation, corresponding to whether it is expressed as a partial
differential equation or as an integral statement of conservation. The more common
approach is to discretize the partial differential equation and to march the solution
forward in time. The alternative method is to project cell volumes along Lagrangian
trajectories as far forward or backward in time as desired, and then to remap the
resulting density distribution onto some target mesh. This latter approach is known
as remapping. Remapping has many advantages, not the least of which is that the
time step is limited only by accuracy considerations, but it tends to be expensive and
complex. In this paper we show that if the time step is made sufficiently short such
that trajectories are confined to the nearest neighbor cells, then the remapping may
be written as a flux-form transport algorithm, and it becomes nearly as simple and
efficient as standard transport schemes. The resulting method, called incremental
remapping, retains most of the advantages of general remapping. These include: (a)
geometric basis for transport, (b) compatibility of associated tracer transport with
simple tracer advection, i.e., retention of tracer monotonicity properties, and (c) effi-
cient handling of multiple tracers since each additional tracer adds only a relatively
small incremental cost.
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1. INTRODUCTION

Let us consider the continuity equation

∂ρ

∂t
+∇ · ρu = 0, (1)

which is alternatively called the transport or advection equation, whereu is the velocity
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andρ is typically the density as in compressible fluid dynamics, although it may be some
other quantity depending on the application, such as layer thickness in a Boussinesq isopy-
cnal ocean model, for example. The solution of this type of equation is perhaps the most
ubiquitous problem in all fields of computational fluid dynamics because it represents a
fundamental property of the flow such as conservation of mass or the conservation of vol-
ume, as the case may be. Associated with this is the equation for the transport of a passive
scalar or a tracer,

∂ρT

∂t
+∇ · ρuT = 0, (2)

whereT is the concentration of the tracer per unit mass. Clearly, (1) and (2) together imply
that

dT

dt
= 0, (3)

where d
dt ≡ ∂

∂t + u · ∇ is the total derivative, indicating thatT is conserved along trajecto-
ries or characteristics, as a tracer should be. There are many examples of such tracers. In
situations when diffusion effects are negligible, two examples are nonreactive pollutants in
the atmosphere and salinity in the ocean. Of course, the densityρ is also effectively a tracer
in the important case when the flow is incompressible(∇ ·u= 0) since (1) is then equivalent
to (3). Even when these equations do not strictly apply, i.e., when the right-hand sides are
nonzero, the transport operators represented by the left-hand sides of these equations are
important components of all conservation equations, and therefore the accurate solution of
such equations is of fundamental importance in practice.

Equations (1) and (2) are partial differential equations that are typically solved forρ and
T by means of some time-explicit finite-difference or finite-element discretization scheme
in which the solution is marched forward in time in a series of finite time steps. There
are innumerable schemes for the solution of these equations, and the literature describing
such schemes is so extensive that it would serve no purpose to give particular references.
The classical schemes are well described in textbooks (e.g., [1–3]), and new schemes are
constantly being devised. These schemes are generally characterized by the following:

(a) Conservation: The equations are associated with conservation laws and are in
conservation form. The numerical schemes are therefore expressed in terms of fluxes across
cell faces which automatically assures conservation.

(b) CFL condition: Numerical stability of these schemes on a finite grid generally
requires that the time step be limited by a Courant–Friedrichs–Lewy condition of the form
Max|u|1t/1x ≤ 1.

(c) Discretization errors: The schemes may be of arbitrary order of accuracy. How-
ever, numerical solutions typically contain diffusion and/or dispersion errors. The diffusion
errors in particular are cumulative and so they tend to grow over a large number of time steps.
Much effort is devoted to upwinding methods and/or positivity or monotonicity-preserving
methods which attempt to control dispersion errors.

(d) Compatibility error: Typically, Eqs. (1) and (2) are solved forρ andρT , respec-
tively, andT is then obtained from the ratio of the two prognostic quantities. An important
characteristic of a tracer satisfying (3) is that no new extrema in the concentrationT are
created sinceT is unchanged along trajectories; i.e.,T satisfies a monotonicity property.
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Althoughρ andρT may both be obtained using conservative and monotonicity-preserving
schemes, there is no guarantee that the resulting tracerT will satisfy the tracer monotonic-
ity property associated with (3). Although this lack of compatibility is also a discretization
error, it is of a different type than the errors referred to in (c) above and is much less fre-
quently discussed in the literature. Specific methods attempting to preserve compatibility
are presented in Sch¨ar and Smolarkiewicz [4] and in VanderHeyden and Kashiwa [5], for
example.

There is an alternative approach to the solution of these equations known as remapping.
We observe that (1) is a conservation equation equivalent to

d

dt

∫
VL (t)

ρ dV = 0, (4)

wheredV is the element of volume, and the integration is over an arbitrary finite Lagrangian
volumeVL(t) at timet , that is, a volume whose bounding surface moves with the local fluid
velocity, or alternatively, a volume which always contains the same material particles.
Correspondingly, (2) is equivalent to

d

dt

∫
VL (t)

ρT dV = 0. (5)

These two equations represent the conservation property directly, and so in a sense they
are more fundamental than Eqs. (1)–(2). The two types of equations may be related to each
other by means of Reynolds’ transport theorem [6].

Equations (4) and (5) indicate that the mass and the total tracer of a Lagrangian volume
are conserved along trajectories. They may therefore be used to solve for the time evolution
of ρ andT . Defining the mass and total tracer of the Lagrangian control volume to be

M(t) =
∫

VL (t)
ρ dV, Q(t) =

∫
VL (t)

ρT dV, (6)

respectively, a discretization of these two equations is simply given by

M(tn+1) = M(tn), Q(tn+1) = Q(tn), (7)

where the superscriptn stands for the current time andn+ 1 stands for some unspecified
future time. Defining Lagrangian cell-average density to be

ρ̄(t) =
∫

VL (t)
ρ dV

/∫
VL (t)

dV = M(t)/VL(t),

we obtain

ρ̄n+1 = M(tn+1)/VL(t
n+1) = M(tn)/VL(t

n+1) = ρ̄nVL(t
n)/VL(t

n+1), (8)

whereVL(tn+1) is the Lagrangian volume obtained by integrating trajectories to timetn+1.
Similarly, defining the cell-average tracer to be

T̃(t) =
∫

VL (t)
ρT dV

/∫
VL (t)

ρ dV = Q(t)/M(t),
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we obtain

T̃n+1 = Q(tn+1)/M(tn+1) = Q(tn)/M(tn) =
∫

VL (tn)

ρnTn dV

/∫
VL (tn)

ρn dV. (9)

Equation (9) is a remarkable result. It indicates that the new-timeT̃ is obtained via an
averaging operator over old-time values of density and tracer, and therefore has the property

Min
VL (tn)

[Tn] ≤ T̃n+1 ≤ Max
VL (tn)

[Tn], (10)

providedρn> 0 everywhere. This property is equivalent to compatibility as previously
defined.

Equations (8) and (9) may be interpreted and applied in two distinct ways:

(a) Forward trajectories: We will simplify the following by limiting ourselves to a
discussion of the remapping of mass, noting that (4) is a special case of (5) withT = 1.
The current grid with known cell masses and volumes is projected to the future timetn+1.
Equation (8) gives the new mean cell density on the new Lagrangian grid, denoted by the
subscriptL. Using these mean densities, we may reconstruct the distribution of density,
ρn+1

L (r), over the entire domain. The simplest reconstruction is to assume that the density is
constant within each cell,ρn+1

L (r)= ρ̄n+1, resulting in a first-order approximation. We now
wish to transfer the new-time mass and mean density to some target grid, which typically
will be the same as the current grid if one is interested in an “Eulerian” method. This is
obtained as follows,

Mn+1
T =

∫
VT

ρn+1
L dV, (11)

and

ρ̄n+1
T = Mn+1

T

/
VT , (12)

where the subscriptT stands for the target grid. Equation (11) implies integration on the
overlap of gridsT andL.

(b) Backward trajectories: The target grid, which is the desired grid at timetn+1, is
projected back in time to the departure points of the trajectories at timetn. This gives us the
Lagrangian gridL at timetn, i.e.,VL(tn). However, we have the mean densities at timetn

on our starting grid, which we assume for simplicity to be the same as the target grid. This
density may be reconstructed to give the density fieldρn

T (r). Equations (7) and (8) are now
interpreted to give

Mn+1
T =

∫
VL (tn)

ρn
T dV (13)

and

ρ̄n+1
T = Mn+1

T

/
VT . (14)

We note that (13) again implies integration on the overlap of gridsT andL. Note that in
this case the reconstruction takes place on the target grid, which may be somewhat simpler
because the target grid is usually more regular than the Lagrangian grid.
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We now summarize some characteristics of methods employing remapping:

(a) Conservation: This is inherent in the construction of these methods provided the
reconstructed density and tracer satisfy∫

V
ρ dV = ρ̄V,

∫
V
ρT dV = ρ̄VT̃, (15)

when integrated over each cell, and ¯ρ, T̃ are the known or specified mean values in each
cell that are the data used in the reconstruction. Note that this implies thatT̃ is the density-
weighted mean.

(b) CFL condition: There is no inherent time step limit. In principle, one can go
forward or backward along trajectories as far as one wishes. However, there is a practical
limit of the form Max|∇u|1t < 1 to prevent trajectory intersections [7]. There is a price to
be paid for the potentially longer time step: gridL is in principle arbitrarily located with
respect to the gridT , and to go from one to the other requires a costly search when the CFL
condition is not satisfied.

(c) Discretization errors: Typically, remapping methods are either first- or second-
order accurate, depending on whether the reconstructed density and tracer are constant or
linear within a cell. First-order methods are inherently positivity and monotonicity preserv-
ing, in analogy with upwind or donor-cell schemes, but are very diffusive. Second-order
schemes may be made positivity and monotonicity preserving by limiting the gradients of
density and tracer within each cell in the reconstruction phase. Higher-order reconstruction
methods might be possible at the expense of much greater complexity.

(d) Compatibility error: Compatibility is automatic for positivity- and monotonicity-
preserving methods. We observe that the final mean tracer in the target cell is given by an
averaging operator as in (9), providedρ >0. Therefore, if the reconstructed tracer within
each cell satisfies a monotonicity constraint, Min[T̃n]< Tn+1<Max[T̃n], among its neigh-
bors, then the mean tracerT̃n+1 will also satisfy this monotonicity constraint and hence it
will satisfy compatibility, as defined previously.

(e) Multiple tracers: Much of the computation required for remapping is geometrical
in nature and is common for each tracer. If this computation is reused, then the extra
computational work for each additional tracer is very small. This is in contrast to standard
transport or advection schemes where generally the entire algorithm must be repeated for
each additional tracer.

Despite its many advantages, remapping is much less common than its alternative, i.e.,
flux-based difference schemes, primarily because it is generally more expensive and more
complicated to implement. Nevertheless, it is very useful in certain applications, and meth-
ods have been found to overcome many of the difficulties. Fully general, second-order
accurate methods in 2D are presented in [8, 9], a first-order 3D method is given in [10], and
second-order 3D methods are given in [11, 12]. Methods based on multidimensional split-
ting utilizing 1D remapping are described in [13, 14]. In the present paper we are concerned
with conservative remapping methods only. However, there exists a nonconservative analog
of remapping, based on Eq. (3), under the broad heading of semi-Lagrangian methods (for
a review, see [15]). There is an extensive literature, primarily confined to meteorological
applications.

The present paper is based on the fact that remapping and advection or transport algo-
rithms are equivalent in the limit of short time steps. If the time step of a remapping scheme
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is restricted such that trajectories are confined to the immediately neighboring cells (we call
this an incremental remapping) then two major advantages accrue:

(1) There is no need to search for the cells of one mesh within another (generally a
very costly procedure), and

(2) the algorithm is expressible in terms of cell-face fluxes, which are reused for
neighboring cells, thereby saving computational work.

The resulting algorithm is analogous to the rezone phase (“phase three”) of ALE methods
[16], but it is much more accurate. It is exactly equivalent to a full-scale remapping, except
for the relatively short Lagrangian displacement, and it therefore retains all the advantages
of a remapping mentioned previously, such as automatic compatibility and economical
handling of multiple tracers. Thus, at the price of a CFL-like restriction we are able to
obtain a simplified remapping algorithm that appears to be a hybrid between advection and
remapping, retaining the advantages of both methods.

2. INCREMENTAL BACKWARD-TRAJECTORY REMAPPING

In what follows, we will illustrate two-dimensional, backward-trajectory incremental
remapping on a regular Cartesian mesh. This is for ease of presentation only; the basic
ideas presented can be easily extended to more complicated alternatives. Let us assume that
we wish to integrate

∂φ

∂t
+∇ · F = 0, (16)

whereφ is the transported concentration, such asρ, ρT , etc., andF is the corresponding
flux, as in Eqs. (1) and (2). A discrete version of the integral form of this equation on a 2D
Cartesian mesh may be expressed as

Aφ̄n+1− Aφ̄n +1t (1y1x Fx +1x1yFy) = 0, (17)

whereφ̄ is the cell area average ofφ, Aφ̄= ∫A φ d A, A=1x1y is the area of the cell,1x,
1y are the cell dimensions,1t = tn+1− tn is the time step,(Fx, Fx) are the average normal
fluxes on a cell face, and(1x,1y) are difference operators in thex- and y-directions,
respectively. This is a standard flux-form discretization of (16), and various schemes differ
only in the definition of the fluxes. Let us assume that velocities are defined on cell vertices.
It then turns out that (17) also corresponds to a backward-trajectory remapping, as illustrated
in Fig. 1.

It will be useful to review the discussion of the backward-trajectory remapping from
the Introduction as it applies to this case. Consider Fig. 1. The components of the vertex
velocities are all assumed to be positive in this case. The backward trajectories from the
vertices of the target or home cell, labeled with indices(i, j ), are indicated by dashed vectors.
The Lagrangian cell, shown as the shaded quadrilateral, is that portion of the domain at time
tn that will arrive in the target cell at timetn+1. It may therefore be called the departure cell.
The total quantity ofφ in the target cell(i, j ) at time tn+1, indicated byAφ̄n+1

i, j , is given
by the integral ofφn over the four small quadrilaterals comprising the departure cell, i.e.,
those subcells overlapping cells(i, j ), (i − 1, j ), (i − 1, j − 1), and(i, j − 1). However,
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FIG. 1. Backward-trajectory remapping of a typical two-dimensional cell, showing the departure cell, the
arrival cell, and the fluxing areas associated with cell faces.

rather than having to compute these overlap integrals directly, we may alternatively obtain
the same result in terms of cell-face fluxes. The net sum of partial area integrals is exactly
equivalent to (17), where the fluxing areas such as1t1x Fy are the integrals over the hatched
areas shown in the figure. We observe that each fluxing area is associated with a cell face
and that it is also required in connection with the departure cell of the neighboring cell; it is
therefore reusable when computing the neighboring departure cell. This is a considerable
economy, both in computational work and in programming logic.

2.1. Fluxing Areas

We will illustrate the computation of fluxes and fluxing areas by focusing on the fluxing
area1t1x Fy at the top or north face of the target cell. Fluxes associated with all other faces
may be obtained by a suitable translation and/or rotation. In the following, we will simplify
the discussion by referring to the target cell as the home cell (H), and neighboring cells
and faces by compass directions, i.e., north (N), northeast (NE), etc. Consider Fig. 2 and
the notation introduced therein. The west vertex is labeled 1, the east vertex is labeled 2,
and the corresponding vertex displacements are the endpoints of backward trajectories:
x1=−u11t = (x1, y1) andx2=−u21t = (x2, y2). These displacements are referred to lo-
cal coordinates located at each vertex. The departure points are connected by a straight line
that intersects the west and east faces at local coordinatesya andyb, respectively, and the
north face at local coordinatesxa andxb, as indicated in Fig. 2. The intersection points are
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FIG. 2. The fluxing area on the north face of the arrival cell, and the associated notation. Note that the points
(xa, 0) and(xb, 0) refer to exactly the same point, but with respect to different coordinates.

given by

ya = y11x + (x2y1− x1y2)

1x + (x2− x1)
, yb = y21x + (x2y1− x1y2)

1x + (x2− x1)
,

xa = ya1x

ya − yb
, xb = yb1x

ya − yb
; (xa − xb = 1x).

(18)

Depending on the direction of the velocity at a given vertex, the corresponding trajectory
departure point may be located in any one of the four neighboring cells surrounding the
vertex. There are very many possibilities associated with the different orientations of the in-
dependent velocities at the two vertices. These possibilities may be summarized by dividing
the fluxing area into four components:

1t1x Fy = Fy1+ Fy2+ Fy3+ Fy4. (19)

These components are classified largely according to the cells in which they are located, as
illustrated in Fig. 3. Thus, for example, the fluxing area in Fig. 2 is composed of contributions
from two components,Fy1 andFy3; Fy1 originates from the W cell, andFy3 originates from
the H and N cells. The remaining two components make no contribution. The four types of
components are defined in the following. They exhaust all possibilities.

(a) Fy1: Corner contributions (E, W, NE, and NW cells) [Case:yay1> 0, x1< 0 and/or
yby2> 0, x2> 0; see Fig. 3a].

Fy1 = 1

4
(ya − |ya|)x1〈φ〉W − 1

4
(yb − |yb|)x2〈φ〉E

− 1

4
(yb + |yb|)x2〈φ〉NE+ 1

4
(ya + |ya|)x1〈φ〉NW, (20)

where〈φ〉W represents the area average ofφ in the triangle in the W cell, for example.
These averages are obtained from triangle area integrals of reconstructedφ distributions,
as described in the next section. There are four possible triangles that can contribute, but at
most two can contribute at any one time.
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FIG. 3. The four possible contributions to the fluxing area on the north face of the arrival cell: (a)Fy1,
(b) Fy2, (c) Fy3, and (d)Fy4.

(b) Fy2: Direct contributions (H and N cells) [Case:yayb≥ 0, xaxb≥ 0; see Fig. 3b].

Fy2 = −1

4
(yb + |yb|)(1x + x̃2− x̃1)〈φ〉N2− 1

4
(ỹ1+ |ỹ1|)1x〈φ〉N1

− 1

4
(yb − |yb|)(1x + x̃2− x̃1)〈φ〉H2− 1

4
(ỹ1− |ỹ1|)1x〈φ〉H1, (21)

where

if x1 > 0 {x̃1 = x1, ỹ1 = y1}, else{x̃1 = 0, ỹ1 = ya}
if x2 > 0 {x̃2 = x2, ỹ2 = y2}, else{x̃2 = 0, ỹ2 = yb}.

The first two terms in (21) represent the contribution from the quadrilateral possibly located
in the N cell, divided into two triangles labeled N1a and N2a, and the remaining terms are
from triangles labeled H1a and H2a from the quadrilateral possibly located in the H cell.
Again, it is obvious that at most two of these four possible triangles can contribute at any
one time.

(c) Fy3: Direct contributions (H and N cells) [Case:yayb< 0, xaxb< 0; see Fig. 3c].

Fy3 = −1

4
(ỹ1− |ỹ1|)xa〈φ〉H1− 1

4
(ỹ1+ |ỹ1|)xa〈φ〉N1

+ 1

4
(ỹ2− |ỹ2|)xb〈φ〉H2+ 1

4
(ỹ2+ |ỹ2|)xb〈φ〉N2. (22)

These are contributions from the four possible triangles labeled N1b, N2b, H1b, and H2b in
Fig. 3c. Again, at most two of these four possible triangles can contribute at any one time.
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(d) Fy4: Corner contributions (E, W, NE, and NW cells) [Case:yay1≤ 0, x1< 0 and/or
yby2≤ 0, x2> 0; see Figs. 3d1 and 3d2].

Fy4 = 1

8
(xa − |xa|)

[
(ya − |ya|)〈φ〉W1− (y1− |y1|)〈φ〉W2

+ (ya + |ya|)〈φ〉NW2− (y1+ |y1|)〈φ〉NW1

]

− 1

8
(xb + |xb|)

[
(yb + |yb|)〈φ〉NE2− (y2+ |y2|)〈φ〉NE1

+ (yb − |yb|)〈φ〉E1− (y2− |y2|)〈φ〉E2

]
. (23)

These summarize the possible contributions from the eight triangles shown in Figs. 3d1 and
3d2, but it is easy to see that at most two of these triangles can contribute at any one time.

The calculation of all these contributions may be organized in various alternative ways for
computational convenience and efficiency. Many cases are mutually exclusive and careful
programming should take this into account. Table I lists the 20 possible triangles associated
with the N face of the H cell, and indicates the 8 triangle evaluations that might actually be
required in the code implementing the present algorithm. For example, the logical conditions
eliminate all but 1 of the 3 triangles that may possibly be located in the NW cell. Of course,

TABLE I

Evaluation of Contributions from the Triangles Shown in Fig. 3

Triangle Cell Triangle Selecting logical
evaluated label label condition

1 NW NW (ya > 0 andy1 > 0) andx1 < 0
NW2 (ya > 0 andy1 < 0) andx1 < 0
NW1 (ya < 0 andy1 > 0) andx1 < 0

2 W W (ya < 0 andy1 < 0) andx1 < 0
W1 (ya < 0 andy1 > 0) andx1 < 0
W2 (ya > 0 andy1 < 0) andx1 < 0

3 NE NE (yb > 0 andy2 > 0) andx2 > 0
NE2 (yb > 0 andy2 < 0) andx2 > 0
NE1 (yb < 0 andy2 > 0) andx2 > 0

4 E E (yb < 0 andy2 < 0) andx2 > 0
E1 (yb < 0 andy2 > 0) andx2 > 0
E2 (yb ≥ 0 andy2 < 0) andx2 > 0

5 H H1a ya yb ≥ 0 andya + yb < 0
H1b ya yb < 0 andỹ1 < 0

6 H H2a ya yb ≥ 0 andya + yb < 0
H2b ya yb < 0 andỹ2 < 0

7 N N1a ya yb ≥ 0 andya + yb > 0
N1b ya yb < 0 andỹ1 > 0

8 N N2a ya yb ≥ 0 andya + yb > 0
N2b ya yb < 0 andỹ2 > 0

Note.Triangle evaluation in the code implementing the present algorithm is orga-
nized according to the cell in which each triangle is located. Many of the triangles
are mutually exclusive. Therefore, only 8 of the possible 20 triangles need to be
evaluated, as selected by the above logical conditions.
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the average number of triangle evaluations per cell face is much smaller and depends on the
velocity field; i.e., a uniform velocity field, not aligned with the grid, would require only 3
triangle evaluations per face.

2.2. Time Step

The time step is determined by accuracy and consistency considerations, and not by
stability considerations. It is required that (a) backward trajectories do not extend beyond
the nearest neighbor cells, (b) the trajectories do not cross, and (c) the departure cell is not
inverted and has positive area. These conditions may be too complicated to implement in
general. A more restrictive but much simpler condition that satisfies these requirements is

|u|1t/1x ≤ 1/2, |ν|1t/1y ≤ 1/2 (24)

at each vertex.

2.3. Reconstruction

We observe thatφ may be eitherρ or ρT . For a second-order-accurate remapping, both
ρ andT must be linear functions of position reconstructed from known mean values ¯ρ, T̃
on the grid [8]. Based on conservation considerations, we require that integrals of density
and the product of density and tracer over the cell recover the total mass and the total tracer:∫

A
ρ d A= ρ̄A,

(25)∫
A
ρT d A= ρ̄T̃ A.

This implies that the distributions in each cell must be

ρ(r) = ρ̄ + α〈∇ρ〉 · (r − r̄),
(26)

T(r) = T̃ + β〈∇T〉 · (r − r̃),

where r is the position vector,̄r = ∫A r d A/
∫

A d A is the cell centroid,̃r = ∫A ρr d A/∫
A ρ d A is the cell center of mass,〈∇ρ〉, 〈∇T〉 are centered estimates of the gradients

of density and tracer within the cell, respectively, andα, β(0≤α, β ≤ 1) are limiting co-
efficients that enforce monotonicity. The gradients may be any centered estimates; this
results in second-order accuracy whenα, β = 1 (on a uniform orthogonal grid, as in the
examples in Section 3, these are simply divided mean differences along grid lines, i.e.,
〈ρ〉x = (ρi+1− ρi−1)/(xi+1− xi−1)). Monotonicity is ensured by a two-dimensional adap-
tation [8] of van Leer limiting [17],

α = Min[1, αmin, αmax], (27)

where

αmin = Max[0, (ρ̄min− ρ̄)/(ρmin− ρ̄)],
αmax= Max[0, (ρ̄max− ρ̄)/(ρmax− ρ̄)],
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and ρ̄min, ρ̄max are minimum and maximum values of ¯ρ among the nearest neighbors;
ρmin, ρmax are minimum and maximum values ofρ within the cell, calculated from (26)
withα= 1 (because the distribution is linear, these are among the four values at the vertices).
The limiting coefficientβ is obtained analogously from thẽT distribution on the mesh.

The distributions in (26) are linear and the productρT is quadratic; therefore we need to
integrate quadratic functions. The Appendix gives a simple three-point integration formula
that is exact for quadratics on arbitrary triangles. All the flux contributions may be calculated
using this rule. Since the coefficients of the tracer distribution are constant within a cell,
only integrals ofφ={ρ, ρx, ρy} over each triangle are needed and they may be reused for
each tracer. Furthermore, integrals ofφ={x, y, x2, xy, y2} over each cell are required to
obtain cell centroids and centers of mass; these are purely geometrical quantities that may
be precalculated and stored. The integration of quadratic functions may be avoided but at a
sacrifice of accuracy and/or compatibility. In this case compatibility may be preserved by
evaluating the tracer integral in (25) using a constant density distribution, but with resulting
loss of accuracy.

3. EXAMPLE CALCULATION

We carry out a simple test problem on a square domain of size 128× 128 units, subdivided
into a uniform grid of 128× 128 cells. The velocity field corresponds to uniform clockwise
angular rotation about the center of the domain such that the velocity is unity at the midpoints
of the sides. The time step is1t = 0.65. This exceeds the suggestion (24) for the time step
but there is no danger of trajectory crossing because the velocity field is regular. The grid
vertex displacements are calculated exactly in order to avoid spurious divergence errors.
The computation is continued for 621 time steps, which is approximately a full period of
revolution.

We consider two different density and tracer distributions. In the first experiment, the
density and the tracer are given by a cylindrical distribution of unit amplitude and 20 units
in diameter, centered 42 units directly north from the center of rotation, and surrounded by
an ambient value of 0.1 for the density and zero for the tracer. In other words, the density
and tracer distributions have the same shape and are superimposed over one another. This
is perhaps the most demanding situation for the purpose of checking the compatibility
properties of the algorithm. The results are shown in Fig. 4 for the density and Fig. 5 for the
tracer. We observe that both the density and tracer distributions are free from oscillations of
any kind. Both distributions retain unit amplitude over the duration of the experiment. The
density very quickly acquires a slightly diffused outline and it propagates almost unchanged
thereafter. This is as expected for a second-order remapping algorithm [8]. However, the
corresponding result for the tracer is quite remarkable. We note that initially the tracer has
values of either zero or one. Therefore, if any tracer diffuses out of the central distribution,
no matter how minuscule an amount, it carries along a unit value. This is why, if we were
to set the external density to zero, we would observe a large spreading patch of unit tracer
value as the cylinder propagates around. The nonzero value of density outside the cylinder
reduces this tendency because the admixture of a tiny amount of nonzero tracer is diluted
over a large amount of material. Nevertheless, the diameter of the tracer cylinder appears to
grow because of this effect, as the tracer is diffused out of the initial cylindrical distribution.
Therefore, these effects are all as one would expect and compatibility is perfectly obeyed.
Of course, total mass and total tracer are conserved by construction.
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FIG. 4. The propagation of an initially cylindrical density distribution, advected with a uniformly rotat-
ing velocity field (n is the time step number): (a) initial distribution,n= 0; (b) one-third revolution,n= 207;
(c) two-thirds revolution,n= 414; (d) full revolution,n= 621.

FIG. 5. The propagation of an initially cylindrical tracer distribution, exactly superimposed on the den-
sity distribution of Fig. 4, and advected with a uniformly rotating velocity field: (a) initial distribution,n= 0;
(b) one-third revolution,n= 207; (c) two-thirds revolution,n= 414; (d) full revolution,n= 621.
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FIG. 6. The propagation of an initial cosine-bell density distribution, advected with a uniformly rotating
velocity field: (a) initial distribution,n= 0; (b) one-third revolution,n= 207; (c) two-thirds revolution,n= 414;
(d) full revolution,n= 621.

In the second experiment, the density and the tracer are initially zero everywhere except
for a cosine-bell distribution of unit amplitude, 16 units in diameter halfway up, and 32 units
in diameter at the base, and centered 42 units directly north from the center of rotation. In
other words, it is a similar experiment except that the distribution is much better resolved
by the mesh. The results are shown in Fig. 6 for the density and Fig. 7 for the tracer. We

FIG. 7. The propagation of an initial cosine-bell tracer distribution, exactly superimposed on the den-
sity distribution of Fig. 6, and advected with a uniformly rotating velocity field: (a) initial distribution,n= 0;
(b) one-third revolution,n= 207; (c) two-thirds revolution,n= 414; (d) full revolution,n= 621.
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FIG. 8. Error contours inside a window, 43≤ x≤ 81, 87≤ y≤ 125, centered about the mean location of
the distributions atn= 621: (a) density, cylindrical initial distribution; (b) tracer, cylindrical initial distribution;
(c) density, cosine-bell initial distribution; (d) tracer, cosine-bell initial distribution.

observe that the cosine-bell distribution is propagated with little change. The amplitude of
the density is reduced to 0.909 and the maximum tracer value is reduced to 0.910. We also
observe that the tracer distribution is slightly broadened at the base, in accordance with the
previous discussion.

Since the initial distributions should be propagated without change, it is relatively easy
to compute the error. Figure 8 shows contour plots of the error for the two experiments at
the final time. The error for the cylindrical distribution is quite large, as is to be expected
for a discontinuous distribution, but it is confined to a relatively narrow region. What
is remarkable is that the density and tracer distributions have preserved their symmetry.
The error for the cosine-bell distribution is an order of magnitude smaller. The density
error is largely concentrated at the peak of the distribution, as is generally observed for
monotonicity-preserving schemes, which tend to suffer from peak clipping. The tracer
error is also small, although the tracer distribution is broadened somewhat in the wake due
to the tracer diffusion effect described above.

Timing is machine and problem dependent. However, a rough estimate of the cost yields
660+ 75 ∗ NT floating point operations/cell, where NT is the number of tracers, for the
most common case of three triangle evaluations per face. This is approximately consistent
with an actual measurement on a single processor of an SGI Origin 2000 that showed that
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it takes between seven and eight tracers to double the execution time of the single tracer
experiments described above. This emphasizes the low cost of additional tracers in this
algorithm. Of course, the relative cost will be dependent on how efficiently the geometric
and tracer dependent parts of the algorithm are coded.

4. DISCUSSION

A new method has been described for the solution of transport equations that combines
the best features of a discrete flux-based scheme and an integral remapping. The resulting
method is simpler and cheaper than a general remapping, and retains all its advantageous
properties except for the ability to take an unrestricted time step. Notable among these
is the compatibility property, which allows the method to deal with tracers accurately.
This is particularly important in applications where the variable corresponding to density
undergoes large variations and may even vanish. Examples include phase density in the case
of multiphase fluid models, ice compactness in the case of sea ice models, and layer thickness
in the case of isopycnal ocean models. Unless compatibility is assured, the associated tracer,
such as temperature or salinity, may become negative or may assume some other unphysical
value, and the code may fail as a result.

Many applications involve a large number of tracers. Examples include models of the
transport of atmospheric pollutants with a very large number of constituents, and sea ice
models that contain a large number of sea ice categories. The present method is advantageous
in these cases because the incremental cost of adding each additional tracer is small.

Parenthetically, the present method improves on the multidimensional accuracy of ex-
isting methods. Many multidimensional monotone advection or transport schemes make
use of a linear combination of a low-order monotone scheme and a high-order antidiffusive
scheme. The low-order scheme is typically an upwind or donor-cell scheme. Unfortunately,
standard extensions of the one-dimensional donor-cell scheme are not truly multidimen-
sional. In 1D, the donor cell scheme may be interpreted as the remapping of cell-constant
quantities. This is not the case in multi-dimensional versions of the donor-cell algorithm
because the associated truncation error terms are not tensor invariant (e.g., see [18]); in
other words, they lack the so-called “corner-coupling” terms. This error is masked in prac-
tice by the very large diffusion associated with the donor-cell algorithm. The low-order
part of the present algorithm, i.e., that part associated with the leading constant terms on
the right-hand side of the reconstruction equations (26), specifically includes contributions
from corner cells and is therefore expected to be fully tensor invariant. This means that the
present algorithm, or at least the low-order part of it, is at last the proper generalization to
multiple dimensions of the donor-cell algorithm.

Finally, the present method has a rather obvious extension to three dimensions, although
at a large increase in complexity due to a greatly increased number of cases arising from
the subdivision of fluxing volumes into constituent tetrahedra.

APPENDIX: AREA INTEGRALS OVER ARBITRARY TRIANGLES

In a Cartesian plane,r = (x, y), consider an arbitrary triangleT defined by verticesr1, r2,
andr3. We wish to evaluate the area integral

I =
∫
T

f (r) dx dy
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over the triangleT , where f (r) is an arbitrary function of position. Then

I = A f (r̄); r̄ = 1

3
(r1+ r2+ r3), (A1)

is exact for linear functions, and

I = 1

3
A[ f (ra)+ f (rb)+ f (r c)];

(A2)

ra = 1

6
(4r1+ r2+ r3), rb = 1

6
(r1+ 4r2+ r3), r c = 1

6
(r1+ r2+ 4r3),

is exact for quadratic functions, whereA is the triangle area given by

A = 1

2
|(x2− x1)(y3− y1)− (y2− y1)(x3− x1)|.
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